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Introduction 

The rotational motion of a torque-free rigid body is known 

to be stable if the rotation takes place about an axis corres- 

ponding to the maximum or minimum moment of inertia, but the 

motion is unstable if the rotation takes place about an axis 

of intermediate principal moment of inertia (see, for exampl'e, 

the text by Meirovitch , Sec. 6.7). In a large number of in- 

vestigations concerned with the attitude stability of spinning 

spacecraft, the spacecraft is envisioned as a rotating, torque- 

free rigid body. It is assumed that the spacecraft dimensions, 

although finite, are small compared with the distance to the 

center of force. This mathematical model permits the assumption 

that the attitude motion has no effect upon the orbital motion, 

thus reducing the complexity of the problem by regarding the 

orbital motion as known. But in general spacecraft are not en- 
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tirely rigid and the question remains as to what extent the I 

rigid-body idealization can be justified. A number of invest- 

igations concerned with the dynamics of satellites containing 

elastic parts have indeed been conducted. In the sequel some 

of these studies are reviewed as a way of introducing the pre- 

sent problem. 

In an attempt to explain the tumbling motion of the Explor- 

er I satellite, Thomson and Reiter2 and Meirovitch3 have invest- 
I 
l 

igated the effect of energy dissipati.on resulting from the vi- 

bration of certain elastic parts of the satellite. On the 

basis of energy considerations, these investigations concluded 



that, for spin stabilization, spinning motion must be imparted 

to the satellite about the axis of maximum moment of inertia. 

Later works by Auelmann4, Pringle , and Likins' established 

the usefulness of the Liapunov direct method for the investi- 

gation of the attitude stability of satellites, at least for 

the' case of rigid satellites. 

Liapunov direct method to investigate the stability of a body 

with connected moving parts. The formulation of Reference 7 ,  

however, is based entirely on ordinary differential equations 

and is suitable for investigating discrete systems but not 

distributed ones. 

5 

Subsequently, Pringle7 used the 

More pertinent to the present subject is the work by 

Ileirovitch and Nelson8 who investigated the stability of motion 

of a satellite containing elastic parts by means of an infini- 

tesimal analysis. Reference 8 represents one of the first 

attempts to treat rigorously distributed elastic members. The 

displacement of the elastic members is represented as a series 

of normal modes multiplying time-dependent generalized coord- 

inates and the effect of truncating the series on the system 

stability is explored. Also related to the present problem 

is the one of a satellite with elastically connected moving 

parts investigated by Nelson and Meirovitch' via the Liapunov 

direct method. In this work the distributed elastic members 

are simulated by means of discrete masses. The dynamics of 

a spacecraft consisting of two rigid bodies joined by an elas- 

tic structure has been investigated by Robe and Kane. 10 

2 



Ignoring gravitational terms, an infinitesimal analysis is 

carried out for small motions about the simple-spin equilibrium 

position. The dynamics of satellites containing elastic parts 

has been further studied by Likins and Wirsching." This lat- 

ter work considers a discrete system and employs the normal. 

modes to represent elastic displacements. 
1 

The Liapunov direct method has been widely used to analyze 

the stability of discrete systems. In recent years, however, 

work has been done on extending the Liapunov metho2 to distri- 

buted-parameter systems. In this regard we single out the 

works by Wang 12'13 and by Parks14 who applied the method to 

analyze the stability of partial differential equations associ- 

ated with elastic and aeroelastic systems. From Refs. 12-14 

it can be concluded that one of the major problems in applying 

the Liapunov direct method to continuous systems is that of 

constructing a suitable testing function. (Actually the same 

statement can be made in connection with discrete systems.) 

The motion of spinning bodies containing distributed 

elastic members is described by sets of both ordinary and pirt- 

ial differential equations. We refer to such sets of different- 

ial equations as "hybrid". In Reference 12 Wang presents a 

simple example of a hybrid system. In a first attempt to 

apply Liapunov's direct method to hybrid systems from the area 

of satellite dynamics, Meirovitch 15'16 studied the stability 

of a spinning rigid body with elastic appendages. Several 

new concepts were introduced in Ref. 15, such as the use of 

3 



some of Rayleigh's quotient properties to eliminate the depend- 

ence of the testing functional on the spatial derivatives, as 

well as the concept of a testing density function. Reference 

16 extends the theory to torque-free hybrid systems. 

This present study extends the work of Refs. 15 and 16 

to {he case of hybrid systems in which testing density funct- 

ions cannot be readily defined. The mathematical model con- 

sists of a torque-free spinning rigid body with three pairs 

of rigidly-attached flexible rods. 

equations of motion, with appropriate boundary conditions, are 

derived. The stability analysis follows the pattern of Ref. 

15, in which it is shown that under certain circumstances the 

system Hamiltonian H is a suitable Liapunov functional. 

Through the use of certain properties of Rayleigh's quotient, 

it is possible to define a new functional K ,  such that H - > K ,  

and to prove that if K is positive definite in the neighborhood 

of the origin, then the trivial solution is asymptotically 

stable. In contrast to the method of Ref. 15, in this case 

it is not possible to define an appropriate testing density 

function. Two approaches are presented here to circumvent this 

difficulty. The first, modal analysis in conjunction with 

series truncation, leads to stability criteria in terms 

of infinite series. The second method involves defining new 

time-dependent coordinates in terms of certain integrals appear- 

ing in the system Hamiltonian. Using these integral coordinates 

and Schwarz's inequality for functions it is possible to dis- 

First the Hamiltonian 

4 



cretize the testing functional K and test its sign properties 

by using Sylvester's criterion. This method yields closed- 

form stability criteria lending themselves to ready physical 

interpretation. 

General Problem Formulation 
% Let us consider a body of total mass m moving relative to 

an inertial space XYZ, as shown in Figure 1. The entire body 

or parts of the body are capable of small elastic deformations 

from a reference equilibrium position coinciding with the un- 

deformed state of the body. 

axes, the set xyz with the origin at point 0 and coinciding 

with the principal axes of the body in the undeformed state, 

and the set 5171; which is parallel to xyz but has the origin 

at the center of mass c of the deformed body. We note that 

S n r ,  is not a principal set of axes. The set xyz serves as a 

suitable reference frame for measuring elastic deformations 

whereas the set 5171; is more convenient for  expressing the over- 

all motion. The position of a typical point in the undeformgd 

body relative to axes xyz is denoted by the vector* r = x& +;yj 

+ zk - and the elastic displacement of an element of mass dm, orig- 
inally coincident with that point, by the vector E = u(x,y,z,t)i 

+ v(x,y,z,t) j + w(x,y,z,t)k, where t,j,s are unit vectors along 

Next we define two sets of body 

- 

- Y 

n.. L- 

* Vector quantities are denoted by wavy lines under the symbols. 

5 



axes x,y,z (or axes 5,q,<), respectively. The radius vector 

from point 0 to c is given by r = - I (g+G)dm = 
1 1 1 u, dm, -c m - 

m m 
where we note that I E dm is zero by virtue of the fact that 

0 is the center of mass of the undeformed body. All integra- 

tions denoted by I --- dm are carried over the domain occupied 
by ihe body in undeformed state, which is designated as the 

reference state. 

m 
- 

m 

From Figure 1 we conclude that the position of the mass 

element dm relative to the inertial space is 

where u = - r = u i + v j + w k represents the displacement 
= 33, + 2 + F ~ ,  

-C -C C- C* C- 

vector measured with respect to axes <TIS and R is the position 

of the origin of these axes relative to the inertial space. 
-C 

Assuming that axes xyz, hence also axes E n < ,  rotate with angu- 

lar velocity 2 = w i + w j + w k relative to the inertial space, 

and denoting by 1;' = i i + 
tive to 5r-15 due to the elastic effect, we have $ + I.& = A' 

5- 17- 5- 

j + k the velocity of dm rela- 
-C C- C- C- 

I -C 

In view of the above definitions, the kinetic energy can 

be Shown to have the form 

where Jd is the inertia dyadic of the deformed body about axes 

sn< .  The elements of the dyadic are 
- 

6 



The kinetic energy can be written conveniently in terms 

of matrix notation. If { k  } is the column matrix correspond- 

ing to ,Rc, {w} the column matrix corresponding to - W, and [J] 
C 

the symmetric matrix, whose elements are the elements 

dyadic -Jd, then Eq.(l) can be rewritten in the form 

1 T o  1 T  T 1 -2 -2 02 T = zm{kc> {Rc}+ z{~} [J]{w}+{I<) {w}+ 31 (uc+vc+wc)dm 
m 

where { K )  is the column matrix with the elements 

K = / [(y+vC)Gc - (z+wc)Gcl dm 

= I [(z+wC)ic - (x+uc)wcl dm 

= 1 [ (x+uC)Gc - (Y+V~);~I dm 

E r n  

K 
m 

‘ m  

rl 

K 

of the 

( 3 )  

( 4 )  

The angular velocity components w ,W ,w do not represent E n 5  
time rates of change of certain angles but nonintegrable combin- 

ations of time derivatives of angular displacements. They are 

sometimes referred to as time derivatives of quasi-coordinates. 

Denoting by ei and Gi(i=1,2,3) the true angular displacements 

and their time rates of change, the angular velocity vector 



can be written in the matrix form {wl = [0]{6>, where { 6 >  is 
the column matrix with elements 6 .  (i=1,2,3) and [ e ]  is a 3x3 

matrix, whose elements depend on the order of the three rota- 

tions ei used to produce the orientation of axes < n <  relative 

to an inertial space. 

be written in terms of true angular velocities as follows 

1 

In view of this, the kinetic energy can 

in which the notation 

has been adopted. 

The potential energy arises primarily from two sources, 

namely gravity and body elasticity. 

tial energy is assumed to be very small compared with the kin- 

etic energy, or the elastic potential energy, and will be ig- 

The gravitational poten- 

nored. The elastic potential energy, denoted by VEL and re- 

ferred to at times as strain energy, depends on the nature of 

the elastic members and is in general a function of the partial 

derivatives of the elastic displacements u,v,w with respect to 

the spatial variables x,y,z. Since uc,vc,wc differ from u,v,w 

by xc,yc,zc, respectively, where the latter are independent 

of the spatial variables, VEL can be regarded as depending on 

the partial derivatives of u 

assume that VEL is a function of spatial derivatives through 

second order but this assumption in no way affects the gener- 

with respect to x,y,z. We c lVc twc 

8 



ality of the formulation. This particular functional depend- 

ence of VEL should not be regarded as a restriction on the 

problem formulation, as the final formulation is expressed in 

a form which involves the partial derivatives only implicitly. 

The system differential equations can be obtained by means 

of Hamilton's principle. To this end, a brief discussion of 

the generalized coordinates is in order. The motion of the 

mass center c is generally assumed not to be affected by the 

motion relative to c, so that it is possible to solve for the 

motion of c independently of the motion relative to c. As a 

result, the motion of c, referred to as orbital motion, can 

be regarded as known. We shall confine ourselves to the case 

in which the first term on the right side of Eq.(5) reduces 

to a known constant, so that the term can be ignored. This 

is clearly the case when the orbit is circular, or the motion 

of c is uniform o r  zero. It follows that the system general- 

ized coordinates are the three rotations ei(t) and the three 

elastic displacements uC(x,y,z,t), vc(x,ytz,t), wC(x,y,ztt) 

The elastic displacements are defined only throughout the do- 

main D namely the subdomain of D corresponding to the elastic 

continuum, where D is a three-dimensional domain corresponding 
e' 

to the entire body. The domain De is bounded by the surface 

S .  

For the holonomic system at hand, Hamilton's principle 

has the form t2 
S I  L d t = O  (7) 

9 



where the motion must be such that the end conditions 

g e l  = 6 e 2  = 6 e 3  = 6uc = 6v = 6w = 0 at t = t t ( 8 )  C C 1' 2 

are satisfied. The integrand L in ( 7 )  is the Lagrangian which 

has the general functional form 

A 

in which L is the Lagrangian density. 

An application of Hamilton's principle leads to the sys- 

tem Lagrangian equations of motion. To this end, we consider 

Eq. (9) and write the variation of L as follows 
9 h A A h 

6~ = [ 1 (- & e i  + - aL 6uc+ - aL 6v +---+ - aL 
C D i=l aei avC 

Assuming that the functions uc,vc,wc are well-behaved, we can 

interchange the variation and differentiation processes so 

that, after a series of integrations by parts with respect to 



the spatial variables, we arrive at 

where z(Xu IJ'v ,"e, ) is a differential operator vector with 

componentsxu ,z ,& defined over the domain De and 
c c c  

c vc c 

ator vectors defined at the surface S bounding the domain De, 

where the latter is recalled as being the domain within which 

the body possesses elasticity. We note, in passing, that in 

general if the components of are of order 2p, where p is 

and integer, the ones of ,R and .Bk are of order 2p-1 or less. 

Introducing E q s .  (10) and (11) i n t o  (71 ,  integrating by parts 

with respect to time, and considering conditions ( 8 ) ,  we obtain 

the ordinary differential equations for the attitude motion 

j 

d aL - - -  dt (:) = 0 , i = 1,2,3 aL 
ae i  a ei 

and the partial differential equations for the elastic motion 



h h 

h h 

h h 

where Eqs.(l3) must be satisfied within the domain D . More- 

over, the solutions of these equations must satisfy the bound- 
e 

ary conditions 

~.[uc,vc,wc]* ~ k [ ~ C , ~ C , ~ C l  = 0 on S , j = 1,2; k = 3 , 4  (14) 3 

We note that the motion of the system is described by a "hybrid" 

set of equations since Eqs.(l2) are ordinary differential equa- 

tions and Eqs.(l3) are partial differential equations. 

In any system in which elastic deformations take place 

there is certain damping present. We shall assume that the 

damping is internal and independent of the rotational motion 

of the body. We shall denote the components of the distributed 
h ,, h 

damping forces by Q, , Q, , Qw so that, whereas Eqs. (12) re- 
C C C 

tain their form, Eqs.(l3) become 
,. h 

- - -  aL a (-+ aL +xu [uc,vc,wcl + a, = 0 

C C at 
auC a uC ,. h 

h 
h 

a aL 
(7) +fw [uc,vc,wcl + Qw = 0 aL 

awC at aw C C 
- - -  

C 

12 



The boundary conditions are not affected by damping so that 
, I they remain in the form (14). 

Hamilton's Canonical Equations 

We shall find it more convenient to work with a set of 

first-order Hamiltonian equations instead of the second-order 

Lagrangian equations. The order here relates to time and not 

spatial variables. To obtain the set of first-order differen- 

tial equations, we consider the Hamiltonian defined by 

3 * n * 

aL aL u + -  v + -  wC) dDe - L 
i=l a e  i C aGc C aGc (16) 

and note that the Hamiltonian has a "hybrid" form, as it is 

both a function and a functional at the same time. Introducing 

the momenta 

, i = 1,2,3 - Po - -  
i a i ;  

.L 

n n 
(17) 

where the latter three are momentum densities, the Hamiltonian 

assumes the form 
2 

A * A n auc auc awC 
= 1 H(eirUCfvC,wCI~e ,P, ,P, ,P, I ~ r - f - - - f r ,  i c c c  aY 

De 

1.3 



h 

in which H is the Hamiltonian density. Considering both forms 

of H in (18), we can write the variation of the Hamiltonian 

as follows 

h .. h h 

aL 6v +---+ - aL 6; 
C aGc C * aL aL 6ili)- [=- 6uc + - - 1 k q 6 e i + -  a uC avC i=l a i i  De 

h 
h A aw 

6 (-1 6 (-) +---+ a(awc/az) az + a ( auc/ax) + a(auc/ay) ay 
C auC aL a uC aL aL 

A 
h A A 

h auC 
6 (-1 ax 

aH + aH aH 6uc + - 6vC +---+ 7 6pW a (auc/ax) 
aH 

C + I  av 

3 C 
De C C apW 

Recalling definitions (17) and comparing coefficients of like 

variations in both forms of (19) I we obtain the Hamiltonian 

equations 

, i = 1,2,3 aH - aH 
I ;e - - -  - - -  sei 'i ape i i 

14 



h n A 

a H  
h , w = -  C 

C C 

- aH - -  aH 
vc u = -  

C 
aPV 

C 
h 

h 

Pu - - - -  aH + x u  [uc,vc,wcl + a, 
C auC C C 

n 

h - - -  - a H  +%, [uc,vc,wcl + Qv 
C C C C av PV 

A 

h h 

[uctVctWcI + Qw - aH - - - +2 
PWc awC wC C 

where Eqs.(20b) must be satisfied at every point of De. Note 

that to obtain the second half of Eqs.(20a) and (20b) use has 

been made of Lagrange's equations, Eqs. (12) and (15). Of 

course, the boundary conditions, Eqs.(ll), remain the same. 

When the kinetic energy is quadratic in the generalized vel- 

ocities, the Hamiltonian reduces to the form 

H = T + VEL (21) 

which is recognized as the system total energy. 

Stability of Hybrid -.- Dynamical _ _ ~ _ _  Systems 

The motion of an n-degree-of-freedom dynamical system can 

be described by 2n first-order differential equations of motion, 

namely, Hamilton's equations. The state of the system of any 

time .L; is given by the 2n canonical variables qk(t), pk(t) 

(k = 1,2,--- , n), where qk are generalized coordinates and pk 
generalized conjugate momenta. For a given set of initial con- 

ditions, the state of the system can be represented by a vector 

1.5 



u-- x(t) in a 2n-dimensional vector space, known as the phase space. 

The Liapunov definition of stability places certain restrict- 

ions on the norm IIz(t)ll. In particular, the trivial solution 

is stable if for any arbitrary E > 0 and time to there is a 

number 6(~,t ) 

satisfied at to, then the inequality Ilz(t)ll 

for all t - > to. 

that the stability definition for a discrete system places re- 

strictions on the generalized coordinates and momenta q 

or alternatively on the generalized coordinates and velocities 

> 0 such that if the inequality ~~~o~~ < 6 is 
0 

< E is satisfied 

From the preceding discussion it is clear 

k' pk' 

qk, {k(k = 1,2,--- I n). 

In the case of distributed systems the generalized coor- 

dinates depend not only on time but also on spatial coordinates. 

The displacement vector at any point P with spatial coordinates 

x,y,zI so that P = P(x,y,z), and at any time t is given by 

u = u_(P,t) I where u is a vector with components u(P,t) , v(Prt), 
and w(P,t) along x,y, and z, respectively. We shall be con- 

cerned in this paper exclusively with cases in which a small 

initial state ensures a small initial potential energy. 

Y - 

Next let us consider a hybrid system with the state vec- 

tor given by v Y = xd(t) + xc(P,t), where qd(t) and xc (P,t) re- 
present discrete and continuous variables, respectively. The 

system is described by the set of differential equations 

16 



where is a vector function depending on the state vector and 

spatial derivatives of the state vector through order 2p, in 

which p is an integer. The continuous variables must also 

satisfy appropriate boundary conditions. The state vector can 

be imagined geometrically as representing an element in a space 

S which can be regarded as the Cartesian product of a finite 

dimensional vector space and a function space, the first cor- 

responding to v The motion 

of the system can be interpreted as a continuous mapping of the 

space S onto itself, which implies that if the state of the sy- 

stem at a given time is known, then the state is known at any 

subsequent time. A solution of system (22) constant in time, 

namely, a set of constants satisfying 

and the second associated with yc. -d 

is known as a singular point or equilibrium point. We shall 

be interested in the stability of motion in the neighborhood 

of equilibrium points. Assuming, without loss of generality, 

that the origin of S is an equilibrium point, we shall concern 

ourselves with the stability of the trivial solution, known 

also as the null solution. 

Stability is now defined in a manner analogous to the 

Liapunov definitions of stability for discrete systems. To 

this end, we first introduce the norm Ilv,(t)ll = llYd(t)ll + 
D 

v (P,t)(l dD(P) , where D is the domain over which continuous Il-c 
variables are defined, and denote by Ilyoll the value of the 



norm at t = to. 

if for any arbitrary positive quantity E and time t there ex- 

ists a positive number 6(&,t0) such that the satisfaction of 

the inequality llsoll < 6 implies the satisfaction of the in- 

Then the trivial solution is defined as stable 

0 

equality JIx(t)(l < E for all t 2 to. If, in addition, lim 
t - t m  

Ilx(t)ll = 0, then the trivial solution is asymptotically stable. 

It is stressed again that we are concerned exclusively with 

the cases in which a small initial state l lyoll implies also 

small spatial derivatives, at least through order p. The 

trivial solution is unstable if it is not stable. 

To test the stability of system (22) in the neighborhood 

of the trivial solution, we define a scalar functional U = U 

(v,ayc/aX,ayc/aY, --- , aPxc/azP) such that U(,O,O,--- ,Q) = 0. 

Actually U is both a function and a functional simultaneously 

but we shall call it a functional. We note that U depends on 

spatial derivatives through order p, as opposed t o 1  which de- 

pends on derivatives through order 2p. Moreover, the total 

time derivative of U along a trajectory of the system is de- 

fined by 6 = dU/dt = IUd*& + / 16c*icdD = VU * V  

where the subscripts d and c designate quantities pertaining 

to discrete and continuous variables, respectively. 

+ / v 6  *ycdD, 
D- - d -d D 

At this point we consider the following theorems: 

Theorem 1 - If there exists for system (22) a positive (nega- 
tive) definite functional U whose total time derivative 6 is 
negative (positive) semidefinite along every trajectory of ( 2 2 ) ,  

then the trivial. solution is stable. 
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Theorem 2 - If the conditions of Theorem 1 are satisfied and 

if in addition the set of points at which 6 is zero contains 
I no nontrivial positive half-trajectory, then the trivial sol- 

ution is asymptotically stable. 

Theorem 3 - If there exists for system ( 2 2 )  a functional U 

whose total time derivative 6 is positive (negative) definite 
along every trajectory of ( 2 2 )  and the function itself can 

assume positive (negative) values in the neighborhood of the 

origin, then the trivial solution is unstable. 

Theorem 4 - Suppose that a functional U such as in Theorem 3 

exists but for which f is only positive (negative) semidefinite 
and, in addition, the set of points at which 6 is zero contains 
no nontrivial positive half-trajectory. Suppose that in every 

neighborhood of the origin there is a point ,v such that for 0 

arbitrary to > 0 we have U > 0 ( <  0) . Then the trivial 

solution is unstable and the trajectories -v(yo, to, t) for 

which uIv=v 
the time t increases. 

> 0 ( <  0) must leave the open domain Ilg 11 < E as 
-0 

A testing functional U satisfying any of the preceding 

theorems is referred to as a Liapunov functional. Theorems 1 

and 3 are associated with the name of Liapunov, whereas Theor- 

ems 2 and 4 with that of Krasovskii. A discussion of these 

theorems for discrete systems can be found in Ref. 1 (Sec. 6.7). 

A functional is defined as positive (negative) definite 

if it is never negative (positive) and it is zero only if is 

identically zero. Continuous variables must be zero over the 



entire domain D. A functional is said to be positive (nega- 

tive) semidefinite if it is never negative (positive) but can 

be zero at points other than the origin. 

Since the scalar functional U depends on spatial deriva- 

tives of y, it may be difficult at times to determine its sign 

properties. In such cases it may be possible to define another 

scalar functional W(n), depending on the state vector 9 alone, 
and such that U - > W. Then we can state the following: 

Stability Theorem - Suppose that for system ( 2 2 )  there exists 

a scalar functional U such that 6 is negative semidefinite 
along every trajectory of ( 2 2 )  and, in addition, the set of 

points at which f J  is zero contains no nontrivial positive half- 
trajectory. Then, if a positive definite functional W can be 

found such that U - > W, the trivial solution p = 2 is asympto- 
tically stable. 

The above Stability Theorem has significant implications 

as far as the stability analysis of hybrid dynamical systems 

of the type considered here is concerned. 

The Hamiltonian as a Liapunov Functional 

We shall show next that under certain circumstances the 

Hamiltonian can be used as a Liapunov functional. Taking the 

total time derivative of H from the first form of Eq.(18) and 

using Eqs.(l2)and (15), as well as boundary conditions (14) 

and definitions (17), we obtain 
A A * .  

k = I (Q, ic + Qv GC + Qw Wc)dDe 
C C C De 

(24) 



Next we assume that the damping forces are such that fi is neg- 

ative semidefinite. 

A A A 

Moreover, due to coupling, the forces Qu , Qv , 0, are never 
C C C 

identically zero at. every point of the phase space but they 

reduce to zero at an equilibrium point. Hence, if the Hamil- 

tonian H is positive definite at an equilibrium point, then by 

Theorem 2, H can be regarded as a Liapunov functional and the 

equilibrium point under consideration as asymptotically stable. 

Cn the other hand, if H is not positive definite and there are 

points for which it is negative, then by Theorem 4 the equili- 

brium point is unstable. 

In view of the preceding discussion, we shall consider the 

Hamiltonian as a Liapunov functional. As indicated by Eq.(23), 

the equilibrium positions are thos rendering the right sides 

of Eqs.(20) equal to zero. Hence, the equilibrium positions 

are the solutions of the equations 

ai: - 
a ei - - -  , i = 1,2,3 aH - -  - 0  I 

C aPW 
C C 

A 

- -  a H  + x u  [uc,vc,wcl = 0 
a uC C 

A 

- -  aH 
av +zv [uc,vc,wcl = 0 
C C 

h 

- -  aH +ZW [uc,vc,wcl = 0 
awC C 
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where Eqs.(26b) must be satisfied at every point of De. 

From Eq.(21) we see that for a conservative system the 

Hamiltonian can be expressed as the sum of the kinetic and po- 

tential energies, where the kinetic energy is given by Eq.(3). 

The elastic potential energy depends upon the type of system 

considered, but is in general a function of the elastic dis- 

placements u,v,w, and spatial derivatives of these displace- 

ments. If we assume that the elastic displacements are inde- 

pendent of one another, VEL can be shown to reduce to 

e 

where, assuminq that the differential operators 

are of order four, the elastic displacements u,v, and w are 

subject to the boundary conditions 

ut dv, anddw 

B [VI = 0 or BkV[vI = 0 on S, j = 1,2; k = 3 , 4  ( 2 8 )  jv 

Under these conditions, the eigenvalue problem corresponding 

to the elastic motion separates into three individual eigen- 

value problems defined by the differential equations 

which must be satisfied over the domain D and by the boundary 

conditions ( 2 8 ) ,  respectively. 
e 
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A t  t h i s  p o i n t  l e t  u s  d e f i n e  t h e  Rayle igh  q u o t i e n t  associ- 

a t e d  w i t h  u as f o l l o w s  

For p o s i t i v e  d e f i n i t e  o p e r a t o r s x u  and MU t h e  q u o t i e n t  RU(u) 

i s  always p o s i t i v e .  rloreover, deno t ing  by n2 t h e  lowest e i g -  

enva lue  a s s o c i a t e d  w i t h  t h e  v i b r a t i o n  u ,  it can  be shown t h a t  

(see Ref.  1 7 ,  Sec.  5 -14)  

u l  

(31)  ' 2  RU(u) 2 Aul 

Analogous s t a t e m e n t s  can  be  made i n  r e g a r d  t o  t h e  d i sp lacemen t s  

v and FJ. I t  f o l l o w s  from (30)  and ( 3 1 ) ,  t o g e t h e r  w i t h  s i m i l a r  

e x p r e s s i o n s  f o r  v and w ,  t h a t  

( u Z u [ u 1  + v % v [ v l  + w % J W l  )dDe 

e (32)  
2 2  1 7 1 I p (*up 2 2  + A,1 v2 + A , ~ W  )dDe 

De 
where t h e  o p e r a t o r s  M U ,  Mv,  and Mw i n  t h i s  case t u r n  o u t  t o  

be  merely t h e  m a s s  d e n s i t y  p .  I f  i n  a d d i t i o n  t h e  d i s p l a c e m e n t s  

u v and w (which d i f f e r  f r o m  u ,  v ,  and w by r ig id-body 

t r a n s l a t i o n s  xc, yc,  and z c )  are independen t ,  it i s  n o t  d i f f i -  

c u l t  t o  show t h a t  

c '  c r  C 

2 2  v2  + A,l~c)dDe 2 2  
%L 2. 2- l I  (*UIUC + * V l  c (33)  

U e 
and wc are coupled  through t h e  c e n t e r  of  

vC 
However, i f  uc,  

mass motion Eq. (33)  does n o t  ho ld  i n  g e n e r a l .  W e  s h a l l  be  con- 

ce rned  w i t h  cases where E q .  (32)  i s  v a l i d  b u t  n o t  E q .  ( 3 3 ) .  
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Let us define a functional K as follows 

1 2 2  
K = T 4- -. 2 / p (A2 ul u2 + Avl * V2 + Awlw )dDe 

De 

It follows from Eqs.(21) and (32) that 

(34) 

Hence, from our Stability Theorem the equilibrium solution is 

asymptotically stable if K is positive definite. 

Torque-Free Systems 

When there are no motion integrals, the state at time t 

of the hybrid system considered is given by an element in a 

space S which can be regarded as the Cartesian product of the 

finite dimensional vector space defined by ei, (i=1,2,3) 

and the function space defined by ucI vCt Wcr pU I P 
I Pwc. C vC 

The space S is simply the phase space. Alternatively, the 

space can be regarded as the Cartesian product of the vector 

space defined by e.., Gi(i=1,2,3) and the function space defined 

by uc, VCf wcr U C I  VCI wc. The motion of the system can be 

interpreted as a continuous mapping of the space S onto itself. 

This implies that if the state of the system at a given time 

is known, then the state is known for any subsequent time. 

Under certain circumstances the system possesses motion 

integrals. For example, such integrals occur when the system 

is free of external torques, in which case the motion integrals 

are simply momentum integrals. These integrals can be regarded 

as constraint equations relating the system velocities. Con- 
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straints may be interpreted as restricting the motion to a 

subspace of a correspondingly smaller dimension. 

Let us assume that the system considered is free of exter- 

nal forces, so that the three torque components about the mass 

center c are zero. It follows that the angular momentum vec- 

tor about c is conserved 

in which denotes the constant angular momentum vector. In 

matrix notation, Eq.(36) assumes the form 

where [J] is the inertia matrix of the deformed body, namely, 

the matrix representation of the inertia dyadic whose elements 

are given by Eqs.(2), and I K )  is the column matrix of the ang- 

ular momentum components due to the elastic motion; the elements 

of { K )  are given by Eqs.(4). Clearly, (6) is the matrix repre- 

sentation of the vector 2. 
Equation (37) can be used to eliminate the angular velo- 

cities 6 .  (i=1,2,3) from the kinetic energy. Indeed, premulti- 

plying Eq. (37) by LJ1-I and rearranging, we obtain 
1 

(38) -1 
{u} = [J] { B  - K) 

Introducing Eq. (38) into E q .  ( 3 ) ,  and ignoring the term due to 

the orbital motion, we can write the kinetic energy in the form 

T = T2 + To ( 3 9 )  
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in which 

1 + K2 K =  K 

in which K~ = T2 and 

2 2  + A:lw2) dDe K* = To + 7 1 p (Atlu2 + Avlv 
De 

is a quadratic expression in the elastic velocities 6 6 
and 

c' c' c' 

is an expression in the angular coordinates and elastic dis- 

placements alone, hence it contains no velocities. It turns 

0 
out that not all three angular coordinates are present in T 

but on ly  two of them. To show this, we denote by f3 the mag- 

nitude of the initial angular momentum vector, assume for con- 

venience that the direction of the angular momentum vector 

coincides initially with the inertial axis 2, and express the 

angular momentum matrix { @ I  in the form B 0 ( R ) ,  where { R }  is 

R R be- the column matrix of the direction cosines R 

tween Z and axes <, 17, g ,  respectively. These direction co- 

sines can be expressed in terms of only two angular coordinates. 

0 

g Z '  qZ' g z  

Inserting Eq.(39), in conjunction with expressions (40) 

and (41) , into Eq.  (34) , we conclude that the functional K can 

be written in the form 

(43) 



where (u) is the column matrix of the elastic displacements u, 

v, w and PA$ is a diagonal matrix of the lowest eigenvalues 

associated with these displacements. The functional K~ can be 

regarded as a modified dynamic potential. By virtue of inequa- 

lity ( 3 2 )  , we conclude that K~ is in general smaller than (or 

equal to) the ordinary dynamic potential To + VEL. 
Since K can be written as the sum of K and K ~ ,  where K~ 1 

is a quadratic functional in the generalized velocities, and 

K~ depends only on the generalized coordinates, K is positive 

definite if and only if K~ and K~ are both positive definite. 

By definition the quadratic part of the kinetic energy, T2, is 

positive definite, so that we conclude that if K~ is positive 

definite K is positive definite. 

To obtain the testing functional K ~ ,  we recall that the 

elements of the inertia matrix [Jl of the deformed body are 

given by Eqs.(2). It is not difficult to show that the matrix 

[Jl can be written as the sum of two matrices [Jl0 and [J], 

where [Jl0 denotes the inertia matrix about axis x,y,z of the 

body in undeformed state which really represents the matrix 

of principal moments of inertia for the undeformed body. Ma- 

trix [ J I 1  represents the change in the inertia matrix due to 

the elastic displacements about axes < , r l , ~  as well as the 

change in the inertia matrix of the undeformed body due to the 

c, y,, z of the origin. Since the elastic dis- translations x C' 

placements uc, vc, wc, as well as the coordinates x c' Ycr Z C I  

of the center of mass are assumed small, the matrix [JI1 is 
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small compared to [Jl0. Hence, writing the matrix [J] as 

because [JI1 is small compared to [Jlo, it is not difficult 

to show that 

where [K] denotes the inverse of [Jl. We may therefore express 

our testing function in the form 

e 
where [K] is given by Eq. (45) . 

The problem of investigating stability reduces to that of 

testing expression (46) for sign definiteness. To this end, 

we expand K in the neighborhood of an equilibrium point E 

and ignore terms of order greater than two. This process leaves 
2 

us with a quadratic expression, denoted by K , in the gener- 
21 E 

alized coordinates. However, the generalized coordinates re- 

presenting the elastic displacements appear in integrals de- 

fined over the elastic domain, which precludes its testing for 

sign definiteness by standard means. This problem can be cir- 

cumvented through the use of modal analysis in conjunction with 

series truncation. To this end, we must solve the eigenvalue 

problems associated with the elastic displacements u, v, w, 

and represent these displacements by finite series of corres- 
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ponding eigenfunctions multiplying associated generalized co- 

ordinates, where the first depend on spatial coordinates alone 

and the latter on time alone. N o w  we are in the position to 

perform integrations with respect to the spatial variables and 

write K as a quadratic form in the newly defined generalized 
21 E 

coordinates. 

ing to this quadratic expression, and it should be noted that 

We can define the Hessi.an matrix [IC] E correspond- 

the order of the Hessian matrix depends on the number of eigen- 

functions used in the series representing the elastic displace- 

ments. The sign definiteness of [21, may be ascertained by 

means of Sylvester's criterion (see Ref. 1, Sec. 6.7). An alter- 

native approach to testing the sign definiteness of involves 

defining new coordinates representing certain integrals appear- 

ing in and using Schwarz's inequality for for functions to 

discretize K . In general this procedure involves considerably 

less effort than using modal analysis and yields sharper stab- 

ility criteria. 

K 2 1  E 

2L 
2 1  E 

The Stability of High-Spin Motion of a Satellite with Flexible 

Appendages. 

The general theory developed in the preceding sections will 

now be used to investigate the stability of a satellite simu- 

lated by a main rigid body and six flexible thin rods, as shown 

in Figure 2a. 

cipal moments of inertia A,B,C about axes x , y , z ,  respectively, 

and the rods are aligned with these axes. 

In the undeformed state the body possesses prin- 

The body is initi- 

ally spinning undeformed about axis z with angular velocity 



The domain of the elastic continuum D consist of three 
as ' e 
subdomains Dx,Dy,DZ, bounded by Sx,Sy,Sz, where 

Hence 

D and = z& over D . Assuming only flexural transverse vi- 

brations, it follows that 

= x& + yj + z b  over D-D r = xi over D r, = y i  over 
Y e' X '  

Y' Z 

u = u = v j + w k, u = u = v j + wcxk, sc= y j + z k over Dx -x x- x- * C  -cx cx- C- C' w. 

u , =  u = u i + w k, u = u i + w k, r = x i + z k over D 
-Y Y' y' -c -,cy= ucy- cy.. -c c- C- Y 

~ = ~ Z = ~ i + ~ j , ~ = ~  = u  i + v  CZL' -c r = x i + y j o v e r D  C' CW Z 2- z -  -c v c z  cz* 

From Eqs.(2) we conclude that the moments and products of in- 

ertia of the deformed body have the values 

J = A + / pX(v2x+wcX)dx 2 + 1 p w2 dy + / pzv:Zdz + m(yc+zc) 2 2  

= B + / pxwcxdx 2 + 1 p (ucy+w 2 2  )dy + / pzu2zdz + m(xc+zc) 2 2  

5 5  D Y 
DX Y DZ 

DZ DX Y 
J 

CY D y  nr l  

2 2  
5 5  +v2 cz )dz + m(xc+yc) 

( 4 7 )  Y 



JEr;=JCs=/ pxxwcxdx+/ p u w dy+/ + mczc 
D Y cy 

DX Y DZ 

where P,, Pyl P z  represent mass per unit length associated with 

the respective rods. We shall assume that the mass of the rods 

is symmetrically distributed, such that p (-XI =p (x) ,p (-y) 

= pY(y) , and pz(-z) = p ,(z). 

we conclude that 

Y 
Examining the elements of [J] , 

A 

[ J l o  = 1 0  

0 C :I 0 

B 

0 

-J s n  sr, 
J -B -J n n  r15 
-J J -C 

5rI 5 5  - 
-J 

We shall be interested in investigating the stability of 

the high-spin motion in which the undeformed satellite rotates 

with constant angular velocity R s  about axis z .  

consider the stability in the neighborhood of the equilibrium 

point 

Hence, we 

e l = e 2 = U  = U  = V  = V  = W  = W  = O  
Y z X Z X Y ( 4 9 )  

which, in turn, implies that 

u = u  = v  = v  = w  = o  
CY cz cx cz cx (50 )  



Since in the equilibrium configuration the body spins about 

axis z with angular velocity R where z coincides with the in- 

ertial axis Z, it follows that B o  = CR . 
2b we conclude that the direction cosines have the values 
p" = -  cos e sin e 2 '  R = sin 8 and R = cos el cos e2. 
Introducing all these values into the first term of Eq.(43), 

considering Eq. (451, and ignoring terms in ~lf82,ucyfuczI 

s '  

Moreover, from Fig. 
S 

c z  1 r l Z  1' CZ 

and zc of order larger than two (as cxf vcz f wcx f wcy f xc f yc V 

well as constant terms) , we can write 

Recalling our testing functional 'c2, as given in Eq.(43), we 

note that the second term, due to the elastic potential, in- 

volves the actual elastic displacements uyf uzf --- , w where- 
Y '  

as Eq.(51), representing the first term of K ~ ,  involves the 

as well as the center of 
CY f W  

--- displacements u U cy' cz' 
mass coordinates, x and y . For consistency, we will replace C C 
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in Eq.(51) the displacements u cy' U cz' --- , w CY b y u y - x  C' 

that the quantities px, pY 

- z C' respectively. To this end, we note 

and p, are even functions of the 
' wY 

u - x --- 
Z C' 

spatial coordinates. 

mains D and DZ, and recalling that xcl yc, z C do not de- 

pend on spatial coordinates, it is not difficult to show that 

Considering the definitions of the do- 

D x' Y 

/ pzz v dz = / p Z z  vZ dz cz 
DZ DZ 

dx = / pXx wX dx pxx wcx 
DX DX 

dy = / pYY wy dY 1 pyy wcy D 
Y 

D Y 

But the definitions of xc and yc are 

so that 

2 2 2 2 2 /;yUcydy+/ Pzuczdz=/ P u dy+/ pzucLdz - (2m-m Y -mZ)xc 

2 2 2 P xV2xdX+! P zv:zdz=/ P xvxdx+j P zvzdz - ( 2m-mx-mz) yc 

Y DZ D y y  Y DZ 

DX DZ DX DZ 

(54) 
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hZ+RZ 

hZ 

h + R  
hx+ Y Y  

hX Y 

where mx = 2 I p, dx , m = 2 1 py dy , mZ = 2 / p z  dz. Y 

serting Eqs. (52) and (54) into Eq.  (511, we obtain 

In- 
h 

From Eq.(55) we note that the terms involving x 2 and yc 2 are 

K31E 21, C 

C 

always positive so that, defining a new testing functional 

which is obtained from K by setting x = yc = 0, we 

can conclude that 

It is clear that the case where the motion of the mass center 

in the x and y direction is zero is the most restrictive case 

and the satisfaction of stability criteria obtained by ignor- 

ing this motion ensures stability for cases with arbitrary 

center of mass motion. 

ignore the motion of the mass center. 

that K3 ‘ E 
finiteness. 

this problem, namely, the modal analysis and the method of in- 

tegral coordinates. 

In view of this, in the sequal we shall 

We note at this point 

is still in a form not easily tested for sign de- 

We shall now consider two methods for circumventing 
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Normal Mode Stability Analysis 

a. General derivations. 

--- 
' wY We recall that the elastic displacements uy, uz, 

are assumed to satisfy individual eigenvalue problems defined 

by differential equations (29) and boundary conditions ( 2 8 ) .  

At this point, we consider the eigenvalue problem given by 

where xu is a linear homogeneous self-adjoint differential op- 
erator and Mu is merely the function p .  

the function u(P,t) may be represented by a superposition of 

Under these conditions, 

space-dependent normal modes cpi(P) multiplying corresponding 

time-dependent coordinates qi(t) 

where P represents the point x, y, z. Furthermore, the eigen- 

functions $i(P) are orthogonal and, if they are normalized such 

that 
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where 6ij represents the Kronecker delta. 

We shall use these results later to eliminate the spatial 

dependence in K . In this section we shall consider a test- 

ing functional slightly different from K . Recalling Eq.(31) 

we note that VEL was replaced by a lower bound using Rayleigh's 

quotient. In using modal analysis this yields no particular 

'E 

' E  

advantage and hence we consider the testing functional K 

4 1  E - 
defined by 

which represents the original dynamic potential evaluated at 

equilibrium. We note again that in the first term of Eq.(61) 

the motion of the mass center is ignored. In analogy with pre- 

vious reasoning, if K is positive definite the equilibrium 

point is asymptotically stable. 
4 J E  

We shall now consider the form of the elastic potential 

energy. To this end, we must take into account the effect of 

the centrifugal forces. Because the satellite has significant 

spin about axis z, whereas the angular velocities about axes 

x and y are relatively small, the centrifugal forces acting 

over the domains D D and DZ are all different. Firs't we 

wish to distinguish between in-plane and out-of-plane vibrations 

of the rods associated with domains Dx and D . 
must distinguish between axial and transverse components of 

the centrifugal forces. It is not difficult to show that domains 

x' y' 

Moreover, we 
Y 
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Dx and D 

fuga1 force alone for the out-of-plane vibration and to both 

the axial and transverse components for the in-plane vibration. 

On the other hand, domain DZ is subjected to the transverse 

component alone. The transverse components are accounted for 

in that part of the kinetic energy not involving velocities, 

so that only the axial centrifugal forces must be included in 

the elastic potential energy. Hence, the potential energy 

can be written in the form 

are subjected to the axial. component of the centri- 
Y 

E LY +   EL^ + v  - 
'EL - V ~ ~ x  

where 

a 2 2  uz a 2 2  vz 1 VELz = 7 / LEIU (7) + E1 (7) I dz 
z az v~ az 

represent the axial centrifugal forces present 
DZ 

where Px and P 

(see, for example, Ref. 7 7 ,  p. 4 4 3 ) .  
Y 
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The elastic potential energy can be written in a more 

convenient form. To this end, we recall that the boundary con- 

ditions for the clamped-free rod corresponding to the domain 

< x < h  + R  are hX x X 

Similar boundary conditions can be written for t he  remaining 

rods. In view of this, integrating Eqs.(63) by parts and in- 

serting the result in (621, we 
-i 

obtain 
-l 
L 

1 a2  a 2  @Iw - a w;)] dx (EIV - 
a L ~ X  

ax x ax ax 
2) + wx - 

x ax 2 VEL = ZCJ [vx 2 
DX 
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The complete expression of is obtained by inserting ex- 

pression (65) into (61). In accordance with Eq.(58), we repre- 

sent the elastic displacements by the following series 
e 

i= 1 

X 0 
X 

v = 1 $xoi(x)Vxoi(t) + 1 $ xei (X)Vxei(t) 

w = 1 QXOi(X)WXOi(t) + 1 Q xei (X)Wxei(t) 

X i=l 
over D X 

0 e X X 

i=l X i=l 

OV eV 

OV eV 

over D 
Y 

+xoi' 4xei' where Ox' ex, o y l  e y l  o z '  e are constant integers, 

--- are eigenfunctions associated with the elastic Qxoi' 1 Qzei 
--- are corresponding gener- rods, and Vxoil Vxeil WxoiI I 'zei 

alized coordinates, in which the letters o and e designate 

odd and even modes of deformation, respectively. The functions 

--- satisfy the relations @xoif +xei' 'xoil 1 +xei 
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Consistent with our previous discussion of the nature of 

the centrifugal forces, we recognize that the eigenfunctions 

entering into expressions (66) are defined by two distinct ty- 

pes of eigenvalue problems, namely, one type for the vibration 

of the radial rods associated with domains Dx and D 

other type for the axial rods associated with domain DZ. For 

the radial rods, a typical eigenfunction, say $xoi, must sat- 

isfy the differential equation 

and an- 
Y 

2 ,i=l,2,--- d2 
7 ( E I w  2 'wxi px'xoi dx x dx 

(68) 
over the domain hx < x < hx + Rx, where $xoi is subject to the 
boundary conditions 

i =  1,2, --- (69) 

2 
'xoi 

2 x dx EIW 

2 
d 'xoi) 2 dx = o  

x=hx+kx 
=[-(EIw 
dx x dx x=h + R  x x  
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2 The quantities Awxi(i=l121---j are the associated eigenvalues. 

Similar eigenvalue problems can be defined for + xoi' 'xei' 
'xei 1 'yoi I 'yei I 

The solution of the eigen- 

value problem defined by Eqs.(68) and (69) is discussed in 

Ref. 17 (see Sec. 10-4). 

The axial rods are not subject to axial forces, so that 

a typical eigenvalue problem, say for $zoi ,  is defined by the 

differential equation 

2 
i = 1,2, --- 2 - 

uzi P z  'zoi ) = A  $zoi 
(EIU 2 

d2 
dz z d z  2 (70) 

which must be satisfied over the domain hZ < z < hZ + R Z l  

where the function $zoi is subject to boundary conditions of 

the form (69) with Px = 0. Similar eigenvalue problems can 

be defined for $zei, $zoi, and $zei. If the rod is uniform, 

the solution of the eigenvalue problem can be taken directly 

from Ref. 17 (Sec. 5-10). 

For uniform or nonuniform rods the solution of the eigen- 

value problem (68) can be obtained by one of the approximate 

methods described in Ref. 17 (Ch. 6 ) ,  and the same can be 

said about the eigenvalue problem (70) if the rod is nonuniform. 

In the sequel we shall regard all the eigenfunctions and assoc- 

iated eigenvalues as known. 

The eigenfunctions possess the orthogonality property. 

Moreover, they can be normalized, so that 
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I pxJlxoi (x) Jlxej (x) dx = 0 
DX 

where 6 is the Kronecker delta. ij 

(71) i,j = 1,2, --- 

Similar expressions can be 

written for the remaining eigenfunctions. 

In view of the above, a typical term in expression ( 6 5 )  

becomes 

e 0 
d2 X X 

) X {  1 w [7(EIw xoi dx x dx j=1 + 1 Jlxeiwxei i=l 

e 2 

j=1 dx x dx 
Jlxej) - - d (Px d) dJlxe I 1 dx X 

2 dx + c W x e i [ T  d2 (EIw 

Hence, the potential energy VEL can be regarded as a function 

of the generalized coordinates V 

ows that K 

etc. It foll- xoi' 'xei' Wxoir 
, Eq. (61) , is a quadratic form in the 2 (1 + ox 

+ 0 + --- + e=) variables el,e2,wyoi,W --- . For 
4 IE 

yei' + ex Y 
stability, must be positive definite in these variables. 
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I 
Furthermore, by using even and odd modes to represent the ela- 

I stic displacements no coupling between even and odd modes 

may be represented as the sum of two qua- 
K41 E 

, occurs. Hence, 

dratic forms K 

modes and K involves odd modes and the rigid body motion. 

, where K involves only even 
and K4el E 4el E 401 E 

40lE 
Therefore, we have 

K4 40 K - - 
E 

where 

and 

- -  1 2 c  2 c  2 - n E- (c-B) el + A (c-A) e2 K401E 2 s B 

0 
0 Z 

Jvzivzoi) + + 4e1 :( i=l f Jwyiwyoi i =1 

0 0 X Z 

+ 1 Juziuzoi)] 482 A ( .  1 Jwxi'xoi C - 
i=l 1=1 

(73) 

0 0  x x 
+ .I (kxi'ij + L Q 2 J  A s wxi J wxj)wxoi W xoj i=l j=1 
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0 0  

+ 1 ('wyi6ij + g R s  2 J  wyi J wyj'wyoi W yoj 
y y 2  

i=l j=1 

0 0  
z z 2  2 2 2  

+ i=l 1 j=1 [(Auzi - "Nij + K 's JuziJuzjluzoiuzoj 

0 0  

+ 1 z z 2  ,I [(AVZi - ")"j 2 + g 62;  JvziJvzjlvzoivzoj i=l j=1 

0 0  

J W V  
x z  

1' 1 Jwyi vzj yoi zoj 

in which 

hX+RX hX+RX 

We recall that K must be positive definite for the equili- 

brium point to be asymptotically stable. Since Eq.(73) 
41E 

I K41E 
can be written as the sum of two parts, and K , it 4eI E 
follows that for K to be positive definite it is necessary 

'E 

I be positive definite. and K4e(E that both K 
401 E 
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can be written in the and K401E The expressions for K 
4el E 

general form 

where qoi and qei are generalized coordinates and no and ne 

are integers denoting the number of coordinates qei and qoi 

considered. The integers n and n depend on the number of 
0 e 

modes assumed and, hence, on the integers ex, ey, eZ, ox' oyI 

and a represent constant coeffic- The quantities aeij oi j Z '  
0 

are and K4e(E ients. According to Sylvester's criterion K 
401 E 

positive definite if the conditions 

laoijl > O Iaeijl > 0 i,j=l,21--- ,k;k=lI2,--- In (77) 

are the principal minor are satisfied, where laoij 

determinants associated with matrices [a I and [ a  3 of the co- 

efficients. Matrices [ a 0 ]  and [a,] are referred to as Hessian 

matrices. 

I and laeijl 
0 e 

Using Eq. (74a), we may write the Hessian matrix [a,] in 

the diagonal form 

lael = raid 

where the order of the matrix is 

n = 2ex + 2e + 2eZ 
e Y 



For a diagonal matrix conditions (77) merely imply that each 

diagonal element must be positive. is positive 

definite if 

ai > 0 i = 1, --- I ne (80) 

where the constants ai are defined by 

2 -0 'vxi s 

, 2 e  +e Auyj-Qs j=i-Ze - i = 1 + 2 e  --- 2 2 
x '  X' X Y  - ai - 

e 

j=i-2e -e ;i=1+2e +e I 2ex+2e 
X Y  x Y ' - - -  Y 

A L  
wyj 

h2 -0; j=i-2ex-2e ;i=1+2e +2e --- ,2ex+2e +eZ 
uzj Y x Y' Y 

ne 2 -fi2 j=1-2ex-2e -ez;i=1+2ex+2e +eZI--- 
'vzj s Y Y 

Considering the above definitions we see that the conditions 

given in (80) are met if 

2 
S 

> n  'vxi 

> o  'wxi 

2 2 
'uyi > 's 
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2 
S 

> Q  *uzi 

2 
S 

By inspection it is obvious that inequalities (82b) and (82d) 

are met. Furthermore, we recall that Avxl, Avzl, Auzl and A 

are the lowest natural frequencies associated with these vi- 

brations, so that inequalities (82) are satisfied if 

UY 1 

are defined by eigenvalue problems similar 

are de- 
UY 1 

where Avxl and A 

to those given by (68) and (691, whereas Avzl 

fined by eigenvalue problems similar to those given by (70)  and 

(69). Considering Eq.(68), it is possible to show that condi- 

tions (83a) are always met (see Appendix A). Hence, the test- 

ing function K is positive definite if copditions (83b) 

are satisfied. 

and I\UZ1 

4elE 

We shall now consider the function K and note that it 
401 E 

can be written as the sum of four independent quadratic forms 
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0 
- -  1 2 c  2 c y  K4031E - 2 R s [-(C-B)O1 B + 401 (iLl Jwyi wyoi 

0 0 0  
2 Y 

) I +  I I (*wyi 6 ij + 2 n 2 J  B s wyiJwyj)Wyoi W yoj Jvzivzoi i=l j=1 
+ 

i=l 

0 0 0  

1 Juziuzoi i=l j=1 

Z X 
) I +  I I (*wxi 6 ij + Z Q 2 J  A s wxi J wxj)wxoi W xoj + 

i=l 

0 0  
2 2 2 2  2 2  

+ i=l I j=1 *I [(Auzi-'s)6ij + x ' s  JuziJuzjluzoiuzoj 

are positive de- and K402 I E  By inspection, we see that ~~~~1 
finite if Avxl 

this is always true, so that K is positive definite if 

E 
> Rs. As discussed previously, 

UY 1 
and A ' ' s  

48 



403 K 

ence 

are both positive definite. E and K4041E 
Let us consider first the function K404 1 E . For conveni- 

we define the following substitutions 

CRS 

(2A) 
n o  = - e 2  

'OZ 
i=l , --- 

'zoi (2/A) 1/2 'sJuzi 
- - 

j=i-o 
(2/A) 'I2 'sJwxj z 

"i 
'xo j 

i=l+o 2 ,  --- ,OX+OZ 

can be written as 
4041 E In terms of these new variables, K 

where 
A 
C 

b o - - -  - 

(86a) 

(88b) 
A ( A ~ ~ ~ / Q ~  2 - 1) 

O Z  
i = 1, --- 

2 
- Juzi bi - 

2 j = i - o  A(Awx ./",) Z 

i = l+oz,--- ,OX+OZ 2 
Jwxj 

Hence, the Hessian matrix associated with ~~~~1 is given by 
E 

[g40,1 E = [1 + bi6ijl 
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where i takes values from 0 to ox + oz. 

minor determinants of [2t4041 

ility conditions are 

Denoting the principal 

by Ai(i = 0,--- , o +oz)  the stab- X E 

1 ox+o Z 
> o  i = O,l,--- 'i 

where 
- 1 

'O - + 5) 
1 + -1 A l = b b  ( l + -  1 
bl 0 1  (91) 

Considering Eqs.(88) and inequalities (83b), we see that if 

is positive definite, then the bi(i = 1,--- , o +o ) are K4e I E x z  
all positive and b is negative. Under these circumstances 

the requirements Ai > 0, (i = O,l,--- ,o +oz)  can be written as 
0 

X 

In terms of the system parameters (92) yields t,.e following 

stability criteria 

C > A  

2 
Jwxl AWXl) 2 > 

x 2  2 0 (- 

C-A-2 1 Jwxi/ ( Awxi/Rs RS 

i=2 



(93c) 

Following a procedure similar to that used above, the require- 

to be positive definite are 
403 I E ments for K 

C > B  

2 
Aw 1 2 Jwyl 

2 (+I S > 0 

i= 2 

(94c) 

Recalling Eq.(73), we see that K is positive definite 
IE 

if conditions (83b), (93) and (94) are satisfied. However, 

we notice that conditions (83b) are contained in (93c) and 

(94c), so that Eqs.(93) and (94) present a complete stability 

picture. It should be noted, that while in general conditions 

(93) and (94) apply to a satellite with three pairs of symmetric 

flexible rods, they can also be applied to a satellite contain- 

ing any smaller number of symmetric pairs of these rods. To 

this end, we note from Eqs.(75) that if the length of any pair 

I or Jvzi of rods becomes zero the corresponding Jvxi, Jwxi, --- 

becomes zero and the series representing that particular pair 



of rods is identically zero. Finally, it should be noted that 

inequalities (93) and (94) have identical forms, so that in the 

stability criteria established considering inequalities (93) 

we can substitute for the parameters A, 'uzi' Awxi' Juzi and 

the parameters B, Avzi, AVi, Jvzi and J to obtain 
Jwxi Wyi 
stability criteria corresponding to inequalities (94). In the 

sequal we shall be concerned only with inequalities (93) and 

results obtained using these inequalities will be applied to 

inequalities (94) using the substitutions defined above. 

A check as to whether inequalities (93) are satisfied 

will be performed numerically. For convenience, we shall write 

inequalities (93b) and (93c) in the slightly different form 

% 
ILUZl 

+ 

J 

- 1/2 

in which (C-A)/Ao = Co/Ao - 1 + RAx - RAz and the parameter R 
is given by 

where Co and A. represent moments of inertia of the rigid part 

of the satellite about the axes z and x, respectively. The 
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quantities RAx and RAz represent the ratios 

At this point, a few comments about the nature of the stability 

criteria resulting from inequalities (93a) and (95) are in or- 

der. We note from (93a) that for stability spin should be 

imparted about the axis of maximum moment of inertia. Inequal- 

ities (95) indicate that the frequency ratios Qs/hwxl and 

are determined by the system parameters and, in partic- Qs/Auzl 
ular, that Qs/Auzl must not merely be less than unity as pre- 

dicted by (83b) but its value must be according to (95b). 

b. Numerical solution - 

If we let the thin elastic rods be uniform, the solution 

of Eq.(70), subject to boundary conditions (69) is 

[sinBiRz-sinhBiRZl [sinBi (z-hZ)-sinhBi (z-hZ) 1 

z z  1 z  1 z  

- - 
@ zoi (p R )1/2sinB. R sinhB. R 

[cos@iRz+coshBiQZl [cosBi (z-hZ) -coshBi (z-hZ) 1 
+ (98) 

(p z ~ z )  'l2sinB. R sinhB . R 1 z  1 2  

in which (6. R ) = Auzi 2 pzRZ/EIUZr where BiRz is determined by 
1 2  
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Introducing Eq. (98) into Eqs. (751,  we obtain 

where 

where 

2 We also note that the frequency ratios (Auzi/fis) , (i=2,---,oZ) 
are given by 

(104) 
2 4 2 

(Auzi/fis) = (BiRZ/BlRZ) (Auzl/Qs) 

The terms involving the z rods in inequality (95b) are deter- 

mined by using Eqs. (102) and (103). 

The eigenvalue problem defined by Eq.(68) and subject to 

boundary conditions (69) must be solved using an approximate 

technique. We shall seek to set up the eigenvalue problem by 

means of Galerkin's method (see Ref. 17, Sec. 6.6). To this 

I end, we assume a solution in the form of the series 
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n A 

A 

xoi where ai are constant coefficients to be determined and + 
are comparison functions. We choose as comparison functions 

for the rotating rod the eigenfunctions of the cantilever rod 

obtained by setting Qs = 0. 

are given by Eq. ( 9 8 )  if $zoi, R2:, z and p 

+xoit 'x' 
gebraic eigenvalue problem defining n eigenvalues 

the associated eigenvectors {a 

We note that these eigenfunctions 

are replaced by ,. 
x and p,. Using Galerkin's method we obtain an al- 

and n 
Awxi 

(:L) } 

where kij are obtained from 

hx+% 2^ 2^ 

hX 

+xoi  - + x a  dx 
2 

- 
dx dx k i j  - k j i  = I E*wx 

2 '+xoi diJ xoi dx 
hx+ 'x 

hX 

X * J  11- 21 dx dx + - m n (hx+tx) 1 2 
4 x s  (hx+Rx) 

in which (hwxi)NR represents the frequency for a nonrotating 
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rod whose rotating natural frequency is A The coefficients 

m are obtained from 
wxi 

ij 

hX+RX 
A A 

hX 

n) The solution of Eq. (106) yields the coefficients a (i) (i, j=1, --- 
and the corresponding frequencies n 2  Awxi. 

and using Eq.(105), the functions Jwxi are given by 

j 
Recalling Eqs.(75), 

where 

a[ (h / a  ) 6 . ax (sin6 . Rx-sinh6 . R 1 - (cos6 . Rx+cosh6 .ax) 1 
X X ]  J X  

Rxj' 
( 6 . k  ) 2 sing.& sinh6.a 

J X  J X  J X  

and 
c1 

in which 

(112) T = [ (hx/ax) 2 + (hx/ax) + 1/31 X 

Equation (111) together with the solution of Eq. (106) permits 

the evaluation of the terms in inequalities (95) associated 

with the elastic displacement wx. 
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At this point, a brief description of the numerical scheme 

appears in order. 

hx/hz, p x / p z ,  EIwx/EIUZ and Co/Ao are fed into a computer pro- 

gram. The program inserts these values, together with those 

of pigz obtained by solving (991, into Eqs. (100) through (103) 

to evaluate JUzi/Ao. 

to define the eigenvalue problem (106). The eigenvalue pro- 

The values of Qs/Auzl, RAz, hZ/Rz, RX/RZ, 

r 

2 Equations (107) and (108) are then used 

blem is solved using IBM subroutines EIGEN and NROOT yielding 

(i) Using the frequency ratios (Awxi/Qs)2 and the constants a 

Eqs.(l09) through (111) the values of Jwxi/Ao are also deter- 
Y 

2 

2 2 With the values of Juzi/Ao, Jwxi/Aof (Awxi/Qs)2 and mined. 
2 

(Auzi/Qs) 
can be checked. Results of these computations are presented 

thus computed, the satisfaction of inequalities ( 9 5 )  

later. 

Method of Integral Coordinates 

The stability analysis of the previous section has the 

disadvantage of leading to an involved numerical procedure. 

The effects of changes in various system parameters are not 

easily assessed. Moreover, in using the normal mode approach, 

the question as to the effect of series truncation on the accu- 

racy of the results remains unanswered. For these reasons we 

shall seek closed-form stability criteria. We recall from 

Eq.(56) that for asymptotic stability the functional K 
(E 

must be positive definite, where K is given by 
31E 
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K = - { a  1 2 c  [-(C-B)B1 2 c  + z(C-A)B 2 - 2 C B2( 1 pXmxdx 31, 2 s B 2 
DX 

+ pXA~xlwXdx 2 + p (A2 -Os)uydy 2 2  + J p A2 w2dy 
D Y uY1 D Y W ' y  

DX Y Y 

Again we note that Eq. 

and it may not be possible to determine its sign definiteness 

by standard techniques. However, by defining suitable new co- 

ordinates and using Schwarz's inequality for functions, it may 

be possible to circumvent this problem. 

the following integral coordinates 

(113) is both a function and a functional 

To this end, we define 



Using Schwarz's inequality, we have 

2 
Recalling the definition of vx, and solving for I pxvx dx, 
inequality (115) yields 

DX 

Similarly 

- 2  - 2  
W 2 X I PXWX dx > - 

DX 
D 
Y - AORAX 

- 2  - 2  U 
2 Z U 

I I pZuz dz > - 
Y DZ - AORAZ 

where the ratios RBY and RBZ are given by 

and Bo denotes the mass moment of inertia of the rigid part 

of the satellite about the y axis. Inserting Eqs.(ll7) into 

> R and if, in Eq. (1131, noting that Avxl > and A UY 1 S' 
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> Q addition, we assume huzl and Avzl > Qs(which will later 
S 

be shown to be the case), then we can define a new testing 

function K given by 
51E 

1 -  2 1  - 2  + 2 c -  (wy + VZ) + (wx + UZ) + g (w, + vz) 1 

2 2 2 2 
(Auyl-Qs) - 2 

2 

wX BORBY 
+ v + -  

AORAX X AORAX 
+ U (Avxl-Rs) - 2 *WXl - 2 

2 2 2 2 

u +  - 2 l  A 2  (Auzl-Qs) - 2 (Avzl-") 
vZ BORBY AORAZ z BORBZ 

+ s i 2 +  

where 

< ( 1 2 0 )  K51E - K31E 

Hence, if ~~1 E is positive definite the equilibrium point is 

asymptotically stable. We note that K can be written as 

the sum of three quadratic forms, each of which must be posi- 

tive definite. Denoting these forms by K 

and their associated Hessian matrices by Tat,,] , [#,,I , 

[d1531E, respectively, we obtain 

51, 

51IE' K52)EI  K531E 

E E 



0 1 

- - 
C (C-B) C C 

2 A2 
- RS C W l B  +1 1 [#,,I - 2B 

E iB 0 RBY 
2 

- 1)- + 1  %zl 
(7 BORBZ 

C 1 

- S - 

L 

(121e) 

-C 

-C 
- 

2 

BORBY 

( 1 - s 

-C 

2 A  wxl + 

-I 

'ZAORAX 

1 

1 -C 

1 

2 
L Z l  
(a2 - l)- 

S 

(121a) 

(121b) 

yields the following stability criteria 

2 
S 

2 2 > R  2 > R r Auyl 
%xl S 

AORAX 
(--E-- C - A  "Xl) > -  

S 

(122a) 

(122b) 
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and 

(122c) 

51 
S 

respectively. From our previous discussion we conclude that 

inequalities (122a) are always satisfied. Furthermore, we note 

that inequalities (122b) and (122c) possess identical forms. 

In view of that, we shall establish stability criteria using 

inequalities (122b) and replace the parameters A, A O ,  RAx, 

RAZ’ Awxl/ns and AUZ1/Rs by B, Bo, RByl  Sz1 Awyl/Qs and 

/QS respectively, to derive criteria valid for (122~). For 

convenience, inequalities (122b) are written in the slightly 

different form 

C > A 

ll2 
- <  QS [.,/A0 + 2; - - 
*WXl 

(123a) 

(123b) 

(123~) 2 2 
QS RAZ 

- %z1 < [. +- Co/Ao - RAz - 1 + R M ( l  - ns/Awxl) 

Three major conclusions can be drawn from inequalities (123): 

(a) For spin stabilization the spinning motion should be im- 

parted about the axis of maximum moment of inertia. 

(b) Spin stabilization is possible if the spin ratios Qs/Awxl 
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and QS/AUZ1 satisfy inequalities (123b) and (123c), which involve 

I the system parameters RAx, RAz and Co/Ao. In addition, the fre- 

quency ratio s2 /Auzl should not exceed unity. 
S 

(c) A satellite which is stable without radial rods remains 

stable if radial rods are added. 

To verify the last statement, we recall that Awxl repre- 

sents the first natural frequency of the out-of-plane vibration 

of a rotating rod and it must be greater than QS, so that 

< 1. In addition, for a satellite with no radial rods, Bs’Awxl 
we find from inequality (123a), that for stability we should 

have Co/Ao > 1 + RAz. Using these results, we see that inequa- 

lity (123b) yields a less stringent criterion as the right side 

of (123b) is always greater than unity. Moreover, for any val- 

ue of RAx other than zero, inequality (123c) is less restrictive 

than the same inequality with Rm = 0. 

We note that, by contrast with inequalities (951, the eval- 

uation of criteria (123) requires much less numerical work. In 

particular, for inequalities (95) we must obtain a complete sol- 

ution of the eigenvalue problem (106) consisting of the n fre- 

quencies 

(123) require only the first natural frequency Awxl of the ro- 

tating rod. 

and eigenvectors {a (i) I ,  whereas inequalities n 
‘wxi 

Numerical Results 

The general solution of the stability problem of a rigid 

satellite with three (or less) pairs of uniform rods has been 
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programmed for digital computation, and a numerical solution 

obtained on an IBM 360 computer. Results are presented for 

the criteria developed using both modal analysis and integral 

coordinates. For the numerical study it is assumed that rods 

x and z have equal mass and stiffness properties, and, in addi- 

tion, the rigid body dimensions hx and hZ are equal (see later 

statement concerning rods y). The above restrictions are placed 

only on the numerical solution to facilitate the presentation 

of data; there are no such restrictions placed on either the 

problem formulation or computer program. In the figures pre- 

sented, the results obtained using modal analysis are repre- 

sented by the dashed lines and those obtained using integral 

coordinates by solid lines. Figure 3 shows the value of the 

ratio fis/(Awxl)NR vs sls/Awxl, where (AwxlINR is the first nat- 

ural frequency of the nonrotating rod, obtained by setting 

= 0. The first natural frequency of the rotating rod is de- % 
noted by Awxl. 

parameter. This figure enables us to make use of the parameter 

plots of Fig. 4 without having to solve the eigenvalue problem 

for the rotating rods, where Fig. 4 shows the spin ratio QS/ 

The quantity HX = hx/Rx plays the role of a 

required for stability as a function of (C  /A ) - RAz, Awxl 0 0  
with RAx as a parameter. 

curve is stable. 

the allowable spin ratio is equal to unity, and for (Co/Ao) 

- RAz > 1 no instability exists. 

ratio 

The region below the appropriate 

The curve shows that for (C /A ) - RAz = 1 0 0  

We note in Fig. 3 that the 

/Awxl is always less than unity. The extent to which 
S 
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is less than unity depends on the parameter HX, in the Qs/Awxl 
sense that if HX increases the ratio QsS/Awxl decreases. 

Hence, in Fig. 4 all values of Qs/Awxl greater than unity are 

said to be dynamically impossible. However, the dynamically 

impossible region may include values of Q /Awxl considerably 

less than unity as shown in Fig. 3 .  It is reiterated again that 

Figs. 3 and 4 are to be used together. Namely, starting with 

a value of 52 /(AwxlINR, Fig. 3 gives Qs/Awxl, which is then used 

in Fig. 4 .  It should be noted that Figs. 3 and 4 present a 

complete stability analysis fo r  a satellite which radial rods 

alone. Figures 5 through 8 show the allowable spin ratio QS/ 

S 

S 

for stability as a function of RAz, with the length ratio %lzl 
Rx/RZ as a parameter. The region below the appropriate curve 

is stable. These curves show that the allowable spin ratio 

must be lower than unity; the extent to which it must Qs/Auzl 
be lower than unity depends on the system parameters. It should 

be noted from Figs. 6 through 8 that the most restrictive region 

of stability is associated with t.he parameter R / R  = 0, namely 

the case in which there are no radial rods. As noted earlier, 
x z  

any stable satellite possessing axial rods alone will remain 

stable with the addition of radial rods. Indeed the addition 

of radial rods increases the region of stability significantly 

and for length ratios Rx/RZ > 10 the allowable spin ratio 

is very near unity. Figure 9 shows the effect of changing 

the rigid body inertia ratio Co / A. on the allowable spin 

ratio for a fixed value of the length ratio Rx/Rz. Again the 



region below the appropriate curve is stable. As expected, an 

increase in Co/Ao increases the stable region. 

the effect of changes in the parameter HZ, where HZ = hZ/Rz. 

Again the region below the appropriate curve is stable. Figure 

10 also shows that increasing HZ yields a slight increase in 

the stability region. Figures 5 through 10 represent criteria 

determined by inequalities ( 9 5 )  and (123~) and are due to the 

addition of z rods. 

Figure 10 shows 

For comparison purposes, a problem which can be considered 

as a special case of the present one, in the sense that it con- 

siders only spin axis rods, has been considered; this is the 

problem investigated in Ref. 16. Inequality (123~) for the 

case where RAx equals zero yields the appropriate stability cri- 

teria. Results using this criteria as well as results from Ref. 

16 are presented in Fig. 11. The results of Ref. 16 working 

with density functions are more restrictive than those of the 

present investigation. 

It should be noted that diagrams identical in every re- 

wyl’ BO’ %Y’ RBZ spect to Figs. 3 through 11 but with Avzl, A 

and R 

can be obtained from inequalities (100) and (128~). 

replacing Auzl, Awxl, Ao, RAx, RAz and Rx, respectively, 
Y 

Summary and Conclusions 

The mathematical formulation associated with the problem 

of the stability of motion of a satellite consisting of a main 

rigid body and three (or less) pairs of flexible rods has been 
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completed. 

directions. Whereas the rotational motion of the body is des- 

cribed by generalized coordinates depending on time alone, the 

elastic displacements of the rods depend both on spatial posi- 

tion and time. Because of the elastic motion of the rods, the 

center of mass of the body is shifting continuously relative 

to the main rigid body. These displacements, however, do not 

add degrees of freedom since they can be expressed in terms of 

integrals involving the elastic displacements. Assuming no 

external torques, there exist motion integrals in the form of 

momentum integrals. These integrals can be regarded as con- 

straint equations relating the system velocities. 

The rods'are capable of flexure in two orthogonal 

The Liapunov direct method has been chosen for the stabi- 

lity analysis because it is likely to yield results which can 

be interpreted more readily than those obtained by a purely 

numerical integration of the equations of motion. Since the 

elastic vibrations result in energy dissipation, it is shown 

that the equilibrium position is asymptotically stable if the 

Hamiltonian is positive definite and unstable if it can take 

negative values in the neighborhood of the equilibrium. De- 

termining the sign definiteness of the Hamiltonian is compli- 

cated by the fact that the Hamiltonian contains spatial de- 

rivatives of the elastic displacements. Two methods have been 

presented to deal with this problem. The first, the standard 

modal analysis in conjunction with series truncation, develops 

criteria which are expressed in terms infinite series 
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associated with the natural modes and frequencies of the elas- 

tic rods. The second, the method integral coordinates 

yields closed-form stability criteria involving the system para- 

meters such as the body moments of inertia, the length and mass 

distribution of the rods, the lowest natural frequencies of the 

rods, and the satellite spin velocity. The advantage of the 

method of integral coordinates is illustrated by the relative 

ease with which closed-form stability criteria are developed 

and by the amount of information which can be extracted from 

their ready physical interpretation. In particular, the anal- 

ysis shows that, for stability, the spinning motion is to be 

imparted about the axis of maximum moment of inertia and that 

the allowable spin ratios Rs/Awxl, Rs/Awyl, Qs/Auzl and RS/ 

are determined by the system parameters. The first is %Zl 
recognized as the "greatest moment of inertia" criterion. 

Moreover, the spin ratios Rs/Auzl and Rs/Avzl should not be 

merely lower than unity (as they should be in the case of simple 

harmonic excitation of the rods to prevent reasonance), but 

they are further restricted by the system parameters. 

also shown that a stable spinning satellite which does not con- 

tain radial rods will remain stable if radial rods are added. 

It is 

Appendix A 

The out-of-plane vibration of a rotating fixed-free rod, 

attached to a hub of radius hx, is subject to an axial centri- 

fugal force and its eigenvalue problem is defined by the diff- 
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erential equation ( 6 8 )  and the associated boundary conditions 

( 6 9 ) .  The first natural frequency for such a rod is always 

greater than the rate of rotation a s .  

true for a rod of arbitrary mass and stiffness distribution. 

This can be shown to be 

To prove this statement we recall Rayleigh's quotient 

D 

where, for the problem at hand, the operators Xand M are given 

+ gx and X The domain of extension of the rod is D : h < x < h 

the centrifugal force Px(x) has the expression 
x -  - 

From the properties of Rayleigh's quotient, we recall that 

( A 4  

where Avxl represents the first natural frequency of vibration 

associated with vx, and I#I repre ents any comparison function. 

Furthermore, the equality sign in ( A 4 )  holds only if 41 re- 
1 

presents the eigenfunction asso+iated with the first natural 

frequency. Letting 4, represen the eigenfunction associated 4 



integrating by parts, and considering conditions vxl with A 

(691, Eq. ( A l l  yields 

We note that Eq. (A5)  can be written as 

where VEI(O1) represents the potential energy due to bending, 

Vp($l) the potential energy due to the axial centrifugal force 

and T(@ ) a reference kinetic energy (see Ref. 17, Sec. 6.4). 1 
Hence, Rayleigh's quotient can be expressed as the sum of two 

independent terms, one representing the bending energy, and 

the other corresponding to the energy associated with the cen- 

trifugal force. 

Due to the above result, we consider two problems related 

to the problem above. The first, a nonrotating fixed-free rod 

with mass and stiffness distribution identical to that of the 

rotating rod and the second, a rotating fixed-free string with 

mass density identical to that of the rotating rod but with 

zero flexural stiffness. Both problems are defined over the 

domain D. Writing Rayleigh's quotient for each of these prob- 



lems we obtain 

(A7 

where the subscripts r and s refer to the nonrotating rod and 

the rotating string, respectively. Using as a comparison func- 

tion the eigenfunction $1, inequalities (A7) take the form 

and recalling Eq. ( A 6 ) ,  we obtain* 

2 2 2 
%xl ' 'r1 + 'sl 

Inequality (A91 indicates that the square of the first natural 

frequency of the rotating rod is always greater than the sum 

of the squares of the first natural frequencies of the nonro- 

tating rod and the rotating string, respectively. 

Let us give further consideration to the first natural 

frequency of the string, hsl. 

* This result is due to a Theorem by Southwell. See Ref. 18. 
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The differential equation for the string is given by 

h dvx (x) 
Vx(O) = 0 ; Px(x) 

where Eq. (A10) is subject to the boundary conditions 

= o  (A14 1 

(All) 

For comparison purposes, let us define the eigenvalue problem 

for a string of length hx + Rx rotating about the point x = 0 

with angular rate Rs. The mass distribution for the string is 

given by 

o < x < h  
X - - P, (hx) 

h 

PX(X) = (A121 
hx< x < hx+Rx - - P (XI 

h 

Denoting the transverse displacement of the string by vxI the 

associated differential equation is 

(A13 

where Eq. (A131 is subject to the boundary conditions 



corresponding to the frequency 

From Eqs. (A15) and (A16), we conclude that a string rotating 

about an axis through its fixed end has a rigid body mode and 

a corresponding first natural frequency equal to the spin rate 

We wish to show that the first natural frequency of a ro- 
o 

tating string fixed to a hub of radius hx must always exceed 

ass '  To this end, we consider Rayleigh's quotient for Eq. (A13). 

Using Eq. (A16), we obtain 

Consider as an admissible function*$ in Eq. (A17) the following 

function 

0 o < x < ~ ~  - - 

9 =  

$sl h x < x < h  - - X + kx 

where +sl represents the first eigenfunction for Eq. 

subject to conditions (All). From Eq. (A17) we obtain 

(A10) 

(A18 1 

* See Reference 19, Chapter VI, Sec. 7.1. 
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0 

However, using the definition of 4 given in Eq. (A18), we find 

Combining the results of Eqs. (A191 and (A20), we have 

(A2 1) 

Therefore, we can state that the first natural frequency 

for a rotating string attached to a hub of radius h is always 

greater than the corresponding frequency for a string attached 

to the axis of rotation. 

we obtain 

X 

Using this result in inequality (A9), 

2 2 
> Ar + Rs  %xl 

2 

which completes the proof. 
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Appendix B 

The computer program consists of a main program and four 

subroutines. Listings for the main program and one of the 

subroutines are provided. The three remaining subroutines 

are IBM SSP subroutines ARRAY, EIGEN and NROOT. These sub- 

routines are readily available. 

The main program is capable of performing a stability 

analysis based on criteria established for either the normal 

mode analysis or the integral coordinate analysis. The pro- 

gram solves the eigenvalue problem of Eq.(106) and uses this, 

along with various input parameters, to establish stability 

bounds for either the normal modes or integral coordinates 

method, depending on the input parameters. In the following 

the input and output parameters are listed with accompanying 

explanatory statements. 
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I) J 

7 . ?  

7 1  
-7 '> 

'-1 ) 
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I 1 7 1  

193 

2 F ' 3  

2 13 

2 2 1  
222 

2 2 3  

2 3 0 
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2 3 .  

3 9 3  

3 3 4  

713 

3 20 

3 3.3 
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Figure I - The  F lex ib le  Body  in  an Inertial Space  
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a. 

b. 

F i g u r e  2 a -  The Flexible Satellite 

2b-  The Satellite Rotational Motion 
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